Balancing California's Energy Needs with its Environmental Goals

Frank A. Wolak Department of Economics Stanford University Stanford, CA 94305-6072 wolak@zia.stanford.edu http://www.stanford.edu/~wolak

Motivation for Talk

- Renewable energy
 - Intermittent—Energy can be produced only when wind and sunlight exists
 - Non-dispatchable—Can only obtain energy that is available
 - Location specific—Resource only exists at specific locations
 - Zero variable cost-No input fuel cost
- Energy efficiency
 - Reduce amount of fossil fuel or electricity necessary to produce given energy service
 - Heating, lighting, appliances
 - More efficient utilization of existing energy resources
 - Price-responsive final demand

- Biomass
- Small hydro (less than 30 MW)

What an RPS Does

- Displace energy from GHG emissions-producing generation units with renewable energy
 - Reduces GHG emissions intensity of electricity consumed
 - Because energy is produced at zero variable cost, if it is physically feasible to deliver electricity, units will operate
- Assumes that renewable technologies that qualify for RPS are least-cost approach to achieving California's GHG emissions reductions goals
- Alternative approach to reducing GHG emissions intensity of electricity is to set a positive price for GHG emissions
 - All technologies can compete to supply electricity subject to paying for their GHG emissions

	Forecast Gene			
		i uniopiato et	<u>20% RPS</u>	<u>33% RPS</u>
		<u>2007</u>	<u>2012</u>	<u>2020</u>
	Biomass	787	1,008	1,778
	Wind	2,688	7,723	12,826
	Geothermal	1,556	2,620	3,970
	Concentrated Solar	466	1,412	3,166
	PV Solar	25	533	2,860
	Small Hydro LT 30MW	822	822	822
	Hydro	8,464	8,464	8,464
	Nuclear	4,550	4,550	4,550
	Fossil	27,205	29,100	33,000
9		9		

Barriers to Meeting Goals

- Transmission lines needed to access major renewable regions
 - Tehachapi region has close to 4,500 MW wind potential
 - Transmission capacity from region inadequate for resource potential
 - Imperial Valley region has significant geothermal and solar resource potential
 - Transmission capacity from region inadequate for resource potential

Managing Intermittency

- Electricity supply must equal demand at every instant in time at all locations in transmission network
 - Some units must follow second-to-second instructions from system operator—Automatic Generation Control (AGC)
 - AGC only provided by fossil-fuel units in California
 - Requires units to turn on and off and ramp up and down to meet load increases and decreases through day
 - Wind and solar units cannot provide this service
- Similar to operating automobile, starting and accelerating fossil-fuel units is very costly in terms of fuel efficiency, GHG emissions, and other pollutants

Managing Intermittency

- Wind and other renewables often unavailable during peak periods
 - July 2006 heat storm, July 24 demand in California ISO control area hit a 1 in 50 year peak of 50,200 MW
 - Less than 5 percent of installed wind capacity was operating at the time
 - Tehachapi wind energy comes primarily at night
 - Solar photovoltaic panels less efficient during very hot portion of day

Managing Intermittency

- Renewable energy can disappear extremely rapidly
- Significant system operation challenges associated with large renewable energy share
 - With 20 percent renewable share, significant fraction of energy can disappear with little warning
 - Operators need to hold more operating reserves
 - Fossil fuel units running with unloaded capacity
 - Quick start combustion turbine generation units
 - Increased GHG emissions production from renewables
 - Energy storage technologies required
 - Transfer off-peak power to peak

Table E.1		Load Statistics for 2003 – 2007*			
Year	Avg. Load (MW)	% Cha.	Annual Total Energy (GWh)	Annual Peak Load (MW)	% Cha
2003 Actual	26,345	/* •g.	230,857	42,581	,, e
2004 Actual	27,309	3.5%	239,312	45,597	7.1%
2005 Actual	26,990	-1.2%	236,483	45,562	-0.1%
2006 Actual	27,427	1.6%	240,344	50,270	10.3%
2007 Actual	27,646	0.8%	242,265	48,615	-3.3%
2003 Adjusted	25,471		223.206	41.063	
2004 Adjusted	26,436	3.7%	231,660	44,209	7.1%
2005 Adjusted	26,477	0.2%	231,994	44,260	0.1%
2006 Adjusted	27,427	3.5%	240,344	50,198	11.8%
2007 Adjusted	27,646	0.8%	242,265	48,615	-3.3%

* Adjusted figures are normalized to account for day of week, changes in the CAISO Control Area footprint, and the 2004 leap year.

Price-Responsive Demand Interval meters have up-front installation costs and communications network cost Variable cost per meter per month is less than \$0.50 per meter Economic case for hourly meters can almost be made based on metering cost saving alone

- Estimated wholesale energy purchase costs savings improves economics
- A number of large retailers in the United States, Canada, Australia, Italy have or are installing universal hourly metering
 - Metering is a regulated distribution network service

- Important point--Fixed-retail price does not imply customers do not pay real-time hourly wholesale price in retail prices
 - Retailers will go bankrupt if this outcome does not hold on annual basis
 - Customers just cannot benefit from lower annual bill from reducing consumption during high-priced hours

Price-Responsive Demand

- All California investor-owned utilities are installing hourly meters for all customers
 - Major barrier to active demand-side participation in California will soon be eliminated
- Remaining challenge is regulatory barrier
 - Recent empirical evidence on "politically acceptable real-time pricing" is promising
 - Methods to share risk of responding short-term prices between consumers and retailers